11th Slovak-Czech-Polish Seminarium "Flows, Spaces and Societies in Central Europe" June 14th-16th, 2017

How a man changes the river (the Váh River in the 20th Century case study)

the Váh River story (some of the stories)

Ján Novotný

men and rivers

- migration corridors
- transportation
- seatlements
- agriculture
- industry water, energy
- natural hazard floods, bank erosion
- human modification of riverine landscape
- river channel straightening
- damming
- by-passing
- embankments constructing

- first regulations at the beginning of the 19th Century
- construction of the "Váh Cascade" system in the 20th Century
- 22 dams and hydropower plants
- diverged (by-passed) channel reaches, total length of 140 km (more than 1/3 of whole river length)

segment	dam	by-pass	construction
1	Liptovská Mara + Bešeňová		1975 - 1976
2	Krpelianska priahrada		1957
3		Krpeliansky kanál	1957 - 1961
4			
5	VD Žilina		1994 - 1998
	Hričovská priehrada		1962 - 1964
6	Hričovská priehrada	Hričovský kanál	1962 - 1965
7	Nosická priehrada	Nosický kanál	1956 - 1958
8		Kočkovský kanál	1936 - 1949
9		Biskupický kanál	1953 - 1956
10		Biskupický kanál	1953 - 1956
	Sĺňava	Drahovský kanál	1960 - 1961
11	Kráľová		1985

aims of study

- classification segments
- transformation of the Váh River fluvial system in the 20th Century
- connectivity
- riverine landscape evolution

data

- DMR
- geologic maps
- topographic data (The Third Military Survey 1869-1887; ZB GIS 2005-2008)
- orthophotomaps (ca. 1950, ca. 2000)

classification

transformation - methodology

- identification of basic elements of fluvial system
- identification of active flood-plain
- calculating reduction rates

$$Rp = (P1900 - P2000)/P1900.100$$

$$Rk = (K1900 - Kvn - K2000)/(K1900 - Kvn).100$$

$$Rn = (N1900 - N2000)/N1900.100$$

transformation

reduction rates

- 1. high reduction (Rp 70-85%; Rk 50-60%; Rn 45-75%)
- 2. medium reduction
- 3. lower reduction (Rp 20-30%; Rk 10-20%; Rn 0-20%)

- A fluvial system area
- B main channel
- C potentially active floodplain

river connectivity

- fluvial geomorphic processes combination of erosion, transport and deposition of sediments by flowing water
- sediment fluxes within the river systems understanding their evolution and functioning
- connectivity linkage of sediment through the system sediment sources and storage zones (Hooke 2003)
- various landforms (buffers, barriers, blankets), can disrupt longitudinal, lateral or vertical linkages (Fryirs et al. 2007)
- human modification considerable barriers to sediment movement

connectivity – research questions

- How to identify and evaluate connectivity rate within whole river basin considering natural conditions and anthropogenic impact?
- What data are we able to gain?
- Does it change in time?
- Does the disconnectivity rate increase?
- Are the any spatial differences in river segments behaviour?

Iongitudinal connectivity within channel – channel bars evolution

channel bars locatisation

Vegetation cover of bars in %

- 1 wood
- 2 wood/grass
- 3 grass
- 4 grass/bare
- 5 bare
- 6 mix

Channel bars area evolution within segments in ha

- 1 Kráľova Lehota Liptovský Mikuláš
- 2 Liptovský Mikuláš Bešeňová
- 3 Bešeňová Ružomberok
- 4 Ružomberok Kraľovany
- 5 Kraľovany Krpeľany
- 6 Krpeľany Vrútky
- 7 Vrútky Strečno
- 8 Strečno Žilina
- 9 Žilina Hričov
- 10 Hričov Bytča

channel bars stabilisation

- according number ca. 40 % bars overlapping in both time horizons
- according area ca. 60 % overlapping in both time horizons
- diminishing of smaller and stabilisation of larger bars

lateral connectivity – river banks analysis

Kráľova Lehota – Martin

Riverbank vegetation cover in %

1 – woody (areal)

2 - woody (linear)

3 – grass/arable

4 – bare

Anthropogenic barriers

1950 – 28 %

2000 - 54 %

Piešťany – Sereď case study

- 35 km long reach
- between the Sĺňava and Kráľová Reservoirs
- partly by-passed
- anastomosing system before construction
- changes of the land cover structures (1949 2003)

Piešťany – Sereď case study

- 1 flowing water
- 2 water area
- 3 sand, gravel (without vegetation)
- 4 pioneer vegetation on the banks and bars
- 5 bars and banks with dispersed woody vegetation
- 6 marshes
- 7 grass
- 8 grass with sparse woody vegetation
- 9 scrubs
- 10 forest continuous
- 11 forest discontinuous
- 12 arable land
- 13 gardens
- 14 orchards, vineyards
- 15 built-up areas
- 16 artificial areas
- 17 gravel mining

1	SPOLU									
	1	2	3	4	5	6	7	8	9	10
1	199,64	31,60	16,00	5,21	0,88	4,18	94,90	40,93	16,81	125,80
2	0,93	3,46			3000		2,40	0,45	0,16	3,62
3	11,45	13,57	1,80	1,05	0,06	0,19	29,03	9,69	8,71	30,85
4	2,13	4,50	0,18	0,08	50.0	0,67	9,73	2,42	2,80	11,66
5	3,78	3,30	0,02			0,31	8,05	4,34	3,30	9,84
6		1,70					6,54	2,13	0,71	3,29
7	32,81	96,36	2,78	1,07	0,10	2,00	340,68	93,29	48,43	220,39
8	11,27	10,10	0,50	0,21	0,01	0,38	52,63	34,68	13,41	85,85
9	3,58	6,52	0,01			0,27	16,34	7,83	9,01	55,76
10	9,85	15,49	1,69	0,52		0,68	52,89	27,68	15,97	243,19
11	7,50	4,70	0,20	0,46	10	0,24	17,16	11,24	6,37	39,10
12	27,73	13,11	0,06	0,08		0,06	129,66	17,29	18,62	68,51
13	2 32.5000	0,08	0,19			300000	26,93	9,50	9,47	30,91
14							3,53	0,45	0,51	2,38
15										
16	0,41						0,76		0,05	
	311,09	204,49	23,43	8,68	1,05	8,99	791,21	261,90	154,34	931,15

LC 1 (flowing water) changes (ha)

LC 3 (sandy and gravel bars without vegetation) changes (ha)

LC 5 (bars and river banks with dispersed woody vegetation) changes (ha)

LC 4 (bars and river banks with pioneer vegetation) changes (ha)

"highlights"

- dams barriers for transport of (mainly coarse) sediments
- channel bars and bank lines evolution connectivity decreasing longitudinal as well as lateral
- channel degradation narrowing and incision (effect of bars stabilisation and decreased sediment load)
- significant degradation of former annabranching system
- vegetation succession
- channel pattern simplification and strong reduction of valuable aquatic and semi-aquatic habitats
- sediments trapped in reservoirs

